Interfacial Velocity-Dependent Plasmon Damping in Colloidal Metallic Nanoparticles
نویسندگان
چکیده
منابع مشابه
Plasmon-induced hot carriers in metallic nanoparticles.
Plasmon-induced hot carrier formation is attracting an increasing research interest due to its potential for applications in photocatalysis, photodetection and solar energy harvesting. However, despite very significant experimental effort, a comprehensive theoretical description of the hot carrier generation process is still missing. In this work we develop a theoretical model for the plasmon-i...
متن کاملEnhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica.
Diatoms are single-celled algaes that make photonic-crystal-like silica shells or frustules with hierarchical micro- & nano-scale features consisting of two-dimensional periodic pores. This article reports the use of diatom frustules as an integration platform to enhance localized surface plasmon resonances of self-assembled silver nanoparticles (NPs) on the surface of diatom frustules. Theoret...
متن کاملDispersion and damping of a two-dimensional plasmon in a metallic surface-state band.
We have studied, for the first time, the energy and the linewidth dispersion of a plasmon in a dense two-dimensional electron system in a metallic surface-state band on a silicon surface. As expected from the considerably high effective density and long Fermi wavelength of the system, the plasmon energy dispersion exhibited an excellent agreement with the nearly free-electron theory. However, i...
متن کاملSize-Dependent Surface Plasmon Dynamics in Metal Nanoparticles
We study the effect of Coulomb correlations on the ultrafast optical dynamics of small metal particles. We demonstrate that a surface-induced dynamical screening of the electron-electron interactions leads to quasiparticle scattering with collective surface excitations. In noble-metal nanoparticles, it results in an interband resonant scattering of d-holes with surface plasmons. We show that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2007
ISSN: 1932-7447,1932-7455
DOI: 10.1021/jp0715979